
P S E U D O S C A L A R C H A R G E D E N S I T Y O F S P I N - J P A R T I C L E S B863 

The first factor in expression (12) comes from the 
interaction of the pseudoscalar charge density with the 
electric field. This factor rotates the spin of the incident 
particle about the axis (j x M) through the angle 

aeEtn 

pltn+(l-a?)1/2W2 

where (j«M) = cosp. The second factor in (12) comes 
from the interaction of the scalar charge density with 
the electric field. This factor rotates the spin of the 
incident beam about the z axis through angle 56z. At 
the low-energy limit, the ratio of the two angles 8p and 
vdg is 

8p/80z= — a(l-~a2)~*(c/v) sinp, 

where c and v are the velocity of light and of the 
incident beam. Thus, there is a possibility at very low 
energy that 8p>8dz; that is, as far as the spin rotation 
is concerned, the effect of the pseudoscalar charge 
density is larger than the effect of the scalar charge 
density. 

Thus, it has been shown that the pseudoscalar charge 
density is an observable. 

Note added in proof. I t was shown in I and I I that 
a2<\. Here we shall improve the upper limit of a2. 

I. INTRODUCTION 

PARTICLE mixing approximations in elementary 
particle physics have been used by Gell-Mann 

and Pais1 (neutral iT-meson mixing due to the weak 
interactions), Glashow2 (p-co mixing due to electro-
magnetism), and Okubo3 (co-0 mixing due to the un-

* Work supported in part by the U. S. Air Force Office of 
Scientific Research Contract No. 49 (638) 589. 

t Work supported in part by the National Science Foundation. 
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Among the spectral functions pt-, the inequality 

(u2-\-v2-\-w2—2uv—2auw-{-2avw)pi 

2u 
-\ (v-\-aw)p2—{2vw+a(—u2+v2+w2)}pz>0 

x 
holds, where u, v, and w are any real numbers. From this 
inequality one obtains 

P l±P3>0 , 

(2xpx—p2)p2—#W>0, (a) 
p 2 > 0 . 

Since a 2 < l , pizLaps>0. From the first equation of (a) 
and the expressions 

p a 1.00 

Z 2 ~ 1 = / dx2[_pi— 0p3] and = —Z 2 / dx2pZj 

Jo 1 — a2 Jo 

one can prove 
1>Z2>0 and a2<\. 
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known interaction that breaks unitary symmetry.) All 
these authors have discussed particle mixing within the 
framework of a Schrodinger equation acting on the 
space of one-particle states; the relation of the approxi
mation to the usual approximations of elementary 
particle physics, derived from field theory or dispersion 
relations, is by no means clear. It is our intent here to 
discuss particle mixing within a field-theoretic context, 
as a further approximation to the pole approximation. 

Phys. Rev. Letters 11, 48 (1963); J. J. Sakurai, Phys. Rev. 132, 
434 (1963); R. Dashen and D. Sharp, Phys. Rev. 133,1585 (1964). 
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FIG. 1. The propagator approximation. The blobs labeled A 
and B represent vertices; the shaded blob represents a propagator. 
We assume that all dependence of the matrix element on the 
momentum transfer along the propagator comes from the mo
mentum dependence of the propagator, and none from the vertices. 
Further, when we consider broken symmetry, we only consider 
the effect of the symmetry-breaking interaction on the propagator, 
and not the effect on the vertices. This corresponds to considering 
only those terms in the perturbation series that are enhanced by 
the presence of small-energy denominators. 

We argue that although particle mixing is a reasonable 
approximation for scalar mesons, it is a most un
reasonable one for vector mesons. If we naively attempt 
to calculate the effect of particle mixing on the electro
magnetic form factors of the baryons, we will find that 
it can alter the charge of the proton. We introduce a 
new approximation, called vector mixing, which does 
not share this deficiency: it is designed to preserve the 
conservation of charge. If the force mixing the particles 
is truly weak, particle mixing and vector mixing are 
indistinguishable. (In this sense the relation between 
the two approximations is much like that between 
perturbative calculation of the S matrix and per-
turbative calculation of the K matrix.) 

We apply vector mixing to deduce a modified form 
of the Gell-Mann-Okubo mass formula,4,5 and also to 
calculate the effect of co-</> mixing on the form factors 
of the strange baryons. Interestingly enough, the pre
dictions of unitary symmetry for the strange baryon 
magnetic moments are not altered, even though the 
shapes of the form factors are changed considerably. 
[There is a simple physical reason for this, co-0 mixing 
effects the electric and magnetic form factors in the 
same proportion. We know it cannot alter Fi(0) 
because of the conservation of charge. Thus, it cannot 
alter F2(0). Of course, effects of the symmetry-breaking 
interaction other than particle mixing may act differ
ently on Fi and Ft and alter the magnetic moments.] 
We also discuss the effects of oo-4> mixing on nucleon-
nucleon scattering and on the decays of the <j>. In an 
Appendix we consider massless vector meson. 

II. GENERAL THEORY 

We begin by considering what we will call the 
propagator approximation. Consider a process of the 
sort shown in Fig. 1. For definiteness, let us assume 
that the external lines attached to vertex A represent 
two incoming and two outgoing nucleons, the internal 
line represents a p meson, and the external lines attached 
to vertex B represent two pions. The diagram then 
describes two-pion production in nucleon-nucleon in-

4 M . Gell-Mann, Phys. Rev. 125, 1067 (1962). 
5 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 

elastic scattering. The propagator approximation con
sists of only considering diagrams of the type shown 
in Fig. 1, and, further, of assuming that the two vertices 
may be replaced by their value at fixed t, where / is the 
square of the four-momentum associated with the 
internal p-meson line. That is to say, all of the de
pendence of the matrix element on / comes from the 
propagator. A further approximation, the pole approxi
mation, consists of replacing the propagator by its 
pole term and the two vertices by their values at the 
pole. In the particular example, this is known to be a 
good approximation for two-pion production near the 
pole. 

When we have a field theory with a high degree of 
symmetry, we usually have the possibility, in any given 
process, of exchanging several kinds of mesons. In this 
case we must use a matrix propagator; otherwise the 
propagator and pole approximations are defined as 
above. If we introduce a symmetry-breaking per
turbation, we will only consider its effect on the 
propagator, not on the vertices. This can be justified 
by looking at the nonrelativistic perturbation ex
pansion: The terms we retain include all those terms 
that are enhanced by the presence of small-energy 
denominators. 

In fact, all of the approximations we will consider 
are not only approximations to the propagator approxi
mation, but also approximations to the pole approxi
mation. Since the pole approximation may be obtained 
from analytic 5-matrix theory, presumably all of our 
work could be done without recourse to entities defined 
off the mass shell. Nevertheless, because we find certain 
sum rules and symmetry properties derived from the 
propagator useful, we prefer to consider our approxi
mations as special cases of the propagator 
approximation. 

Structure of the Matrix Propagator 

Let us now consider the structure of the propagator. 
For the moment let us assume the particles involved 
are scalar. Then the propagator, D(&2), a matrix, is 
defined by 

= - i f^(2TT)-%-^-^-^[D(F)],7, (1) 

where i runs from 1 to n, and n is the number of 
particles in the channel of interest. Inserting a complete 
set of intermediate states, we find 

D(&2) = fdaWXP-cfi+ie)-1, (2) 

where 
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From its definition, 9 is a Hermitian, positive definite 
matrix. Furthermore, if we assume invariance under 
the antiunitary TCP operator 12, which has the proper
ties 

o w , (4) 

O|0>=|0>, (5) 
and 

QAi(x)Q=Ai(-x), (6) 
then 

C9(«2)]</=E<0|i4<(0)|»X»l^i(0)|0>«(Pn2-a2) 
n 

= '£{m\Ai(0)\0)(0\Aj(0)\m)d(PJ-ai) 
m 

= C?(«2)]y.'. (7) 

That is to say, TCP invariance implies 9 is symmetric. 
Since we already know 9 is Hermitian, this means 9 
must be real. 

The Pole Approximation 

Let us suppose there are n stable particles in the same 
channel as the n fields we have discussed above. In that 
case we may separate out the contributions from the 
one-particle states. 

D 0 2 ) = E [9 ( r ) / (& 2 -w r
2 ) ]+cont inuum terms, (8) 

where 
9M = *etr)eW9 (9) 

e^r)==(0\A^x)\r,p)e^'x, (10) 

and \r,p) indicates a state of one particle of the rth. 
kind in an eigenstate of momentum with eigenvalue p. 
Since the 9 ( r ) must all be real symmetric matrices, it 
must be possible to choose the phases of the one-particle 
states so the e ( r ) are all real. The pole approximation 
consists of the propagator approximation with the 
neglect of the continuum terms in Eq. (8). [Oi course, 
we could also have obtained the pole approximation 
from the viewpoint of dispersion relations, without 
using the propagator approximation—in fact, without 
talking about fields at all. However, we have found it 
more convenient to prove the reality and symmetry 
of the 9 ( r ) by this method.] 

We may also write D(k2) in another way. We may 
define the matrix II (k2), which we call the self-energy 
matrix, by 

(P-nik^y^Dik2). ( l i ) 

We prove in Appendix I that the pole approximation 
is equivalent to assuming that n is a linear function of 

n(&2) = M + ( I - Z ) & 2 , (12) 
where 

M - i = E ( 9 ^ / W ) , (13) 
r= l 

and 

Z-i = £ 9 0 . (14) 

M and Z are, by definition, real, symmetric positive-
definite matrices. 

We note that the pole approximation involves n 
arbitrary components for each e ( r ) and n arbitrary 
masses—a total of n2+n arbitrary parameters. We 
obtain the same number of parameters by counting 
the components of the two unknown real symmetric 
matrices M and Z. 

If the e ( r ) are all independent, we may find a matrix 
S such that 

[Se<'>]<=fc'. (15) 
Then 

S D ( i 2 ) S t = ( * * - A ) - 1 . (16) 

where A is a diagonal matrix with mr
2 in the rth entry. 

If the particles involved are unstable, then the poles 
are on the second sheet and the mT are complex numbers 
whose imaginary parts are connected in the usual way 
with the lifetime of the unstable state. The 9 ( r ) are 
complex symmetric matrices of rank one, and M and Z 
are arbitrary symmetric matrices. Everything is as 
before, except that we now have n2+n complex parame
ters instead of n2-\-n real ones. 

If the particles are of spin one, nothing is altered 
except that the analysis above applies to the transverse 
part of the propagator only, which is the only part that 
contributes to processes of physical interest. 

Broken Symmetry 

Let us suppose that the Hamiltonian of the world is 
such that there is an absolute selection law forbidding 
transitions from one of our w-particle types to another. 
Then, by normalizing the fields, we may write the 
propagator in the pole approximation in the form 

D(* 2 )=(A a -Mo)- 1 , (17) 

where Mo is diagonal. Now let us suppose we introduce 
some perturbation that allows the particles to mix. 
The propagator then assumes the form 

D ( # ) = {k2-M,-hm-hzk
2)~\ (18) 

where 5m and hz are unknown, real symmetric matrices. 
This expression involves n2+n unknown parameters. 
This is more than we can reasonably determine from 
the crude experimental data that is usually accessible 
to us; therefore it is desirable to introduce further 
approximations to reduce the number of independent 
parameters. Below we shall discuss three such. 
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Partiele-Mixing Approximation 

In this approximation we assume the propagator to 
be of the form 

D(ft2)=(*a-M)-1. (19) 

If we are interested only in processes that go on in a 
limited range of energy—for example, in multipion 
production in the neighborhood of the p and co masses— 
we may choose M to be the value of II (k2) somewhere 
in that range. It then does not seem an excessively 
drastic truncation of the pole approximation to neglect 
the dependence of II on k2. 

We want to show the connection of this formulation 
with the usual formulation of particle mixing theories, 
in which we solve a Schrodinger equation for a 
Hamiltonian acting on a Hilbert space in which the 
only states are one-particle states.1-3 It is characteristic 
of such a method of calculation that, as a consequence 
of the conservation of probability, the sum of the 
residues of the perturbed propagator must be the same 
as the sum of the residues of the unperturbed 
propagator. That is to say, since the only states 
allowed are one-particle states, 

E e(r)=l. (20) 

Equation (20) is the shadow of an equation that exists 
in the full theory. It is easy to show,6 that if the inter
action does not effect the vacuum-expectation value 
of the equal-time commutators of the fields and their 
first time derivatives, 

fda2
9(a

2) = f, da2
9

0(a2), (21) 

where 9° is the weight function for the unperturbed 
propagator. However, in the full theory, residue may 
be transferred from the continuum to the poles. 

Applying to Eq. (20) the matrix S denned by Eq. 
(15) we find 

S E 9<'>St=SSt=I, (22) 

that is to say, S is unitary. Equations (22) and (16) 
imply that 

D(*2)=(A2-M)-1, (23) 
where 

M=S+AS. (24) 

It is easy to see by direct comparison that M is the 
mass matrix of Glashow2 and of Feinberg and 
Bernstein.7 

If the interaction satisfies somewhat more stringent 
conditions than those that are necessary for Eq. (21), 

6 H . Lehmann, Nuovo Cimento 11, 342 (1954). 
7 J. Bernstein and G. Feinberg, Nuovo Cimento 25, 1343 (1962). 

we have another sum rule,6 

fda2a2
9(a

2) = f da?a2
9
0(a?). (25) 

We assume in the sequel that the symmetry-breaking 
interactions always preserve (21) and (25). A typical 
interaction that preserves these sum rules is 8g#y$r<l>. 
Some interactions that violate them are 5/x2#2 and 

If we attempt to apply Eq. (25) to the pole approxi
mation alone, we obtain, in analogy to (20), 

<*). mi = M0 (26) 

We cannot use both (20) and (26); together they imply 
that the new propagator is the same as the old one. 
Clearly, we must choose (20); the sum rule (21) is 
much more dependent on the low-mass part of the 
weight function than the sum rule (25). 

We remark that the particle-mixing approximation 
involve i(n2+n) parameters, half as many as the pole 
approximation. 

Vector-Mixing Approximation 

Satisfactory as it is for many purposes, the particle-
mixing approximation violates an important property 
of vector-meson dynamics, the transversality of the 
vector mesons (or, equivalently, the conservation of 
the current to which the vector mesons are coupled). 
We would like any approximation we use for vector-
meson theories to preserve this condition—one of the 
phenomena in which vector mesons play a large role 
is the form factors of elementary particles; if we use 
an approximation that violates current conservation, 
we are liable to find charge disappearing from the 
proton. The reflection of current conservation in the 
propagator is that the corrections to the propagator 
vanish at zero-momentum transfer,8 

r 9(a
2)da2 r 9°(a2)da2 

J a2 ~J a2 (27) 

Just as in the scalar case, if the interaction obeys 
certain additional conditions, there is another sum rule, 

f9(a
2)da2= f9

Q(a2)da2. (28) 

We assume in the sequel that the symmetry-breaking 
interactions always preserve (27) and (28). A typical 
interaction that preserves these sum rules is beSfy^Ap. 
Some interactions that violate them are b^A^A^ and 
dZ(dvAfi—d(iAJ/)(dvAli), In contrast to the scalar case, 
the sum rule (27) is more strongly dependent on the 

8 K. Johnson, Nucl. Phys. 25, 435 (1961). 
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low-mass part of the weight function than the sum rule 
(28). Therefore, the condition we must apply to the 
propagator is 

PROPAGATOR 
APPROXIMATION 

which implies 

E (9(r)/ntr2) = MQ-1
) 

B(k2)=(k2-Mo+hk2)-K 

(29) 

(30) 

We call this form for the propagator the vector mixing 
approximation; it involves %(n2+3n) unknown 
parameters. 

Off-Diagonal Vector Mixing 

Vector mixing contains more parameters than 
particle mixing. We would like to describe here an 
approximation which we call off-diagonal vector mixing 
that shares many of the desirable features of vector 
mixing but has fewer parameters. The approximate 
expression for the propagator is obtained from (30) by 
replacing the diagonal elements of 5 by constants. 
Thus, 

Bik^iP-M+U2)-1, (31) 

where M is diagonal and 5 is symmetric and off diagonal. 
This approximation will not violate charge conser
vation as long as the original symmetry group contains 
no transformations that exchange the vector mesons 
mixed by the perturbation. We shall not use off-
diagonal vector mixing in the subsequent parts of this 
paper, but it is, for example, a suitable approximation 
for the p-co mixing problem of Glashow.2 Off-diagonal 
vector mixing involves %(n2+n) parameters. 

r ANALYTIC } 
S-MATRIX 1 

THEORY I 

"T 
I REGGE POLES, | 

ETC. I 
I J 

PARTICLE 
MIXING 

C ( n 2 + n ) / 2 ] 

VECTOR MIXING 
£ ( n 2 + 3 n ) / 2 J 

OFF DIAGONAL 
VECTOR MIXING 
C(n2+n) /21 

FIG. 2. The relation between some approximations which occur 
in elementary particle physics. The number in square brackets is 
the number of arbitrary parameters in the approximation, for a 
process that may proceed through n intermediate states, each 
with the same quantum numbers. The approximation at the head 
of an arrow is a further approximation to the approximation at the 
tail. We discuss in this paper only the approximations inclosed in 
solid lines. 

Figure 2 shows the relation between the various 
approximations we have discussed in this section. 

III. APPLICATIONS 

The Strongly Interacting Vector Mesons 

We wish to apply the vector mixing approximation 
described in the preceding section to the strongly 
interacting vector mesons. Under unitary symmetry, 
these nine particles form an octet and a singlet; the 
symmetry-breaking interaction causes them to de
compose into two singlets (<t> and co), two doublets (the 
K*'$) and a triplet (p).9 If we assume the symmetry-
breaking part of the Lagrangian transforms like part 
of an octet, then arguments similar to those which lead 
to the Gell-Mann-Okubo mass formula4,5 tell us that 
the propagator is of the form 

[D(P)]-

(l+e)£2-
0 
0 
0 

• M i 

(1-
0 

-2tW-
0 
0 

•Mi 

0 
0 

(1+2«)F-
k20 

•Mi 

0 ' 
0 

k2/3 
W—Mi 

(32) 

where the rows and columns correspond to the fields 
K*, p, co, <t>y in that order, and Mh M2, 0, and e are 
unknown constants. Using the known masses of the i£* 
and the p, it is simple to determine Mi and e from 

(33) 

(34) 

The remaining two parameters are determined by the 
requirement that D has poles at the observed co and <t> 
masses. This implies 

l(l+2e)m(
2--M1'](m(

2--M2)-l32mJ==0} 

and 
[(l+2€)w0

2-M!](w0
2~M2)-/32w/=O, (35) 

and 

These yield 

and 

tnK*2=Mi/(l+e), 

m?=Mi/0—2e). 

e=-0 .12 , 

Mi=0.69(BeV)2. 

which yield 

and 
M2=0.68(BeV)2, 

/3=±0.18. (36) 

Note that Mi and M2 are equal to within experimental 
accuracy; in the absence of the symmetry-breaking 
interactions, the vector octet and the vector singlet 
have the same mass. This apparently accidental de
generacy was first observed by Okubo, using the 
particle-mixing approximation. 

9 We use the following masses for these particles: mp = 750 MeV, 
mK* = SSS MeV, #^ = 785 MeV, and ^ = 1 0 2 0 MeV. H. Barkas 
and A. H. Rosenfeld, University of California Radiation Labora
tory Report UCRL-8030 (rev.) (unpublished). 
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The 2X2 isoscalar submatrix of D may be written in 
the form 

D= (»-mJ)-1
9u+ (V-mJ)-^, (37) 

where 
1 

/mJ—M2 —tnJl3 \ 
X( , (38) 

and 90 is of the same form with m^ and m$ interchanged. 
Now that we have determined the parameters of the 

vector-meson propagator, we may apply our model to 
several processes in which mixing plays a significant 
role. 

Nucleon Electromagnetic Form Factors 

Let Fi(k2) (i=ly 2) denote the usual electric- and 
magnetic-nucJeon form factors. We may write these 
quantities in the form 

F/(A2) = [2?<p/(*2-f»p2)]+remainder, 
and 

+remainder, 

where the remainder terms are free from singularities 
at the vector-meson masses.10 The pole terms are given 
exclusively by diagrams of the type of Fig. 1, with the 
incoming particle a photon and the outgoing particles 
a nucleon and an antinucleon. Following the approxi
mation procedure explained above, we use unitary-
symmetric values for the vertices but the expression 
(32) for the propagator. In the absence of the sym
metry-breaking interactions, let the coupling constants 
of the nucleon to the vector mesons be G^, G;p, and 
G{a: let the couplings of the p and co to the photon be 
yp and ya. (Under unitary symmetry, there is no <f>-y 
coupling.) Then the residues are given by 

Rip = Gipyp/(l-2e), 

7«[ (mj—M2)Gia}—mjpGitf,'] 

(l+2e-/32) (mj-m^) 
and 

7«[ (™><t>2—M2)GiU—tnffiGi^ 
R<4. = . (39) 

(\+2e-fi2){m^-mJ) 

We emphasize that the quantities to be compared with 
the predictions of unitary symmetry are G and 7, not 
the experimental residues. 

We obtain the experimental residues R by the fol
lowing procedure. We assume the isoscalar form factor 

10 Note that it is the remainder terms that determine whether 
the form factors require subtractions. The number of subtractions 
can not be decided from our approximations, which are blatantly 
invalid at high-momentum transfers. 

is the sum of an co pole and a 0 pole, and the isovector 
form factor is the sum of a p pole and a soft core of the 
type discussed by Hand, Miller, and Wilson11 at 30 F~2. 
We then determine the residues at these poles by fitting 
the values and first derivatives of our form factors to 
the values and first derivatives of the form factors 
given by Hand et at. at zero-momentum transfer. In 
this way we obtain form factors that agree with experi
ment for space-like momentum transfers about as well 
as those of Hand et al. We find that Ri<f>=13 F~2, 
Rla=-16 F-2, £20=10 F-2, -#2W=-5 F-2, Rlp=-U 
F - 2 a n d £ 2 p = - 5 7 F - 2 . 

These numbers should not be considered excessively 
reliable. To take one example of a way in which error 
might arise, if there is a hard core in addition to co and 
<j> poles in the isoscalar-electric form factor, then we 
may transfer large amounts of residue from the <f> pole 
to the core without destroying the fit of the form factor 
to the data. Such a reduction of R1(t> would much 
diminish our estimate of Gi^. 

We now have the products 7G; to proceed further 
we must know 7P and yu. Unitary symmetry tells us 
that 7P is v3yw, and if we assume that the p pole domi
nates the pion-electromagnetic form factor, the deter
mination of 7P is straightforward. It has been discussed 
in detail by Sakurai12 (actually, he discusses the deter
mination of the residue at the p pole in the pion form 
factor, but to obtain 7P from this is trivial). The result 
is 

7 p ^_ W p 2( i_2 e ) i /2 / (87r) 1 / 2 . (40) 

(The sign is arbitrary.) This yields yp= — 3.2 F~2 and 
y0)= —1.9 F~2. Combining this with Eq. (39) we find 
(with the above choice of sign), 

GiP=4, 
G2p= 22.1, 

Giw=S, 
and 

G 1 0 =T21. (41) 

We do not bother to tabulate values for the isoscalar-
magnetic coupling constants; the isoscalar-magnetic 
form factor is poorly known and any numbers we would 
obtain would be extremely inaccurate. 

A Remark on Strange-Baryon Form Factors 

Unitary symmetry tells us that there are only two 
independent coupling constants for the coupling of an 
octet of vector mesons to the baryon octet, and only 
one for the coupling of a vector-meson singlet. We are 
thus in a position to use Eqs. (40) and (41) to calculate 
the residues at the vector-meson poles in the strange-
baryon electromagnetic form factors. Since measure-

11 L. N. Hand, D. G. Miller, and Richard Wilson, Rev. Mod. 
Phys. 35,335 (1963). 

12 J. J. Sakurai, in Theoretical Physics (International Atomic 
Energy Agency, Vienna, 1963), p. 227. 
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ment of these quantities seems remote, we shall resist 
the temptation; however, we remark, that as a con
sequence of the vector mixing-approximation, for any 
baryon 

: + — = • (42) 
mtf Mi 

That is to say, u-<j> mixing does not affect the predictions 
of unitary symmetry at zero-momentum transfer. In 
particular co-(/) mixing has no effect on the predictions 
of unitary symmetry for the magnetic moment of the 
A.13 (Of course, other effects of the symmetry-breaking 
interaction may change the A moment; we merely 
assert that those which are enhanced by the presence 
of small-energy denominators do not.) 

Vector Resonances in Nucleon-Nucleon 
Scattering 

We may also use our methods to obtain the residues 
at the vector-meson poles in nucleon-nucleon scattering. 
We shall denote these residues by gip

2, giJ, and gt>
2. 

These are related to the quantities we have determined 
by 

giJ= [ ( l + 2 6 - / 3 2 ) ( ^ - w / G - i 

X {{mJ—Mi)GiJ—2mJ$Gi4,Giw 

+Z(l+2e)mJ-M1-]G^}, 

X { 0 V - M 2)Gia
2- 2mSpGnPi« 

+ [ ( 1 + 2 « ) V - M 1 ] G , - / } , 
and 

gi,*=Gif*/(l-2e). (43) 

Scotti and Wong14 have estimated that gi„2/47r= 1.3, 
gi„2 /4x=2.8, and gi//4r=2.3. These numbers are 
probably very unreliable; other investigators have 
obtained quite different results.18 

We may solve these to obtain an estimate 

and 

Gi ,= 4.5, 

Gi«=6.7, 

»10- = 3.5. (44) 

There is an alternative solution to the quadratic equa
tion for the latter two: 

and 
G i „ = - 1 . 0 , 

Gi^— 7.5. 

13 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 
(1961). 

14 A. Scotti and D. Y. Wong (to be published). 
16 In an earlier version of their work pPhys. Rev. Letters 10, 

142 (1963)], Scotti and Wong find £lp
2/47r = 5.1, g2,

2/47r = 49.0, 
giJ/4:7r—16.7. R. Bryan, C. Dismukes, and W. Ramsey, Nucl. 
Phys. 45, 353 (1963), using a different approach, rind giJ/4w 
+*i»V4*r = 34.0. 

The agreement of the first of these with the first of 
Eqs. (41) offers no confirmation of either unitary sym
metry or vector mixing; it is merely the statement that 
Rip is approximately equal to ypgip, and is independent 
of all our analysis (except, of course, our calculation of 
7P). I t is the second and third equations of (41) and 
(44) that are sensitive to our theories. Their failure to 
agree is not so discouraging as might first appear, since 
the "raw. data"—the R's and the g's—used in calcu
lating the G's are so very poorly known. 

We emphasize that our uncertainty is only temporary. 
The near future is certain to bring far more reliable 
estimates of the residues in both nucleon-nucleon scat
tering and the electromagnetic form factors; our 
methods will then provide a good check on unitary 
symmetry. 

K* Interactions 

The only strange-vector coupling constant about 
which there is some information is that of the K* to 
the A and N. Using the values for the G's given by 
Eq. (44), we find GIK*AN= —4.8. Using the values 
given by Eq. (41), we find GIK*AN= — 6.1. The experi
mentally measured coupling constant is 

giK*AN2/4:ir=GiK*AN2/4:7r(l+e), (45) 

and hence giK*A^2/47r=3.0, if we use Eq. (44), 0.7, if 
we use Eq. (44'), and 3.4, if we use Eq. (41). An estimate 
of this constant was made by Chan,16 who assumed that 
the i£* pole dominated the process 7r~+p—> K°+A. 
Using his results and an experimental width of 45 MeV, 
we estimate 0.24<gi#*Aj\r2/4x<0.35. Once again the 
lack of agreement is disappointing, but Chan's model is 
so crude that it is difficult to assess the reliability of this 
result. 

The Decay of the ^ 

We begin by discussing </>—*K+K. Under unitary 
symmetry G^KK is arbitrary and G$KK is zero; thus the 
matrix element for <j> decay is given by 

GOKK2 (mf—Mi) 
\M{<t>->KK)\2= . (46) 

( l+2e- /3 2 ) (mf-mj) 

Unitary symmetry also tells us that G0}KK2=iGpinr
2) 

hence 

T(ct>-~>KK) 3 ( l - 2 e ) (mf-Mi) 

(44') T(p-> TTTT) 4 ( l + 2 e - 5 2 ) (mf-mj) 

X 
/?A3/wpy 

-- 0.027. (47) 

Using a p width of 100 MeV, we find r ( 0 -> KK)~ 2.7 

16 C.-A. Chan, Phys. Rev. Letters 6, 383 (1961). 
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MeV. This is in agreement with experiment17 and also 
on the same order as the predictions of Okubo and 
Sakurai,3 who use particle mixing models. 

We shall now discuss </>—>p+?r. It is known from 
experiment that the amplitude for this process is 
essentially zero,17 while a good explanation12 of co decay 
is obtained by assuming it proceeds principally through 
co —>p+7r. We shall show that it is always possible to 
choose the two independent coupling constants G<t>pir 

and Gup* such that the matrix element for <j> decay 
vanishes while that for co decay does not. Indeed, we 
shall show that this may be done not merely in the 
vector-mixing approximation but in the more general 
propagator approximation. 

The matrix element for <j> decay is the residue of the 
<j> pole in forward p-w scattering; 

|MO->p+7r) |2= lim (£ 2-?V) 

XM(p+7r->p+7r). (48) 

Let us denote the vector (G^p^fi^p^) as G. Then, 
calculating the right-hand side of Eq. (48) in the 
propagator approximation, and using Eq. (8) for the 
propagator, we find 

| M ( 0 - > P + T T ) | 2 = G ^ G . (49) 

Since g^ is a real symmetric 2X2 matrix of rank one, 
it must always possess an eigenvector with eigenvalue 
zero. If we choose G to be proportional to this eigen
vector, the matrix element for <j> decay must vanish. 

Using the value for p$ given by Eq. (38) we find 

G0}pir/G(f>pT= m^lim^—M^ 
= ±0.52. (50) 

IV. ALTERNATIVE FORMALISMS 

In this section we discuss the relations between our 
techniques and some alternative approaches to the 
same problems. 

Mixed States 

In the calculations of Sec. Il l we made great use of 
the 9(r), the residues at the poles of the propagator. We 
could also have done our calculation in terms of the 
e(r), the characteristic vectors of the p(r). We did not 
use this alternative method because, for our purposes, 
it is computationally inexpedient; however, let us see 
what it looks like. 

Let us suppose we have a process of the sort shown 
in Fig. 1. In the absence of the symmetry-breaking 
interactions, there are n amplitudes for the particles 

17 L. Bertanza, V. Bisson, P. L. Connolly, E. L. Hart, I. S. 
Mittra, et al.} Phys. Rev. Letters 9, 180 (1962); P. Schlein, W. E. 
Slater, L. T. Smith, D. H. Stork, and H. K. Ticho, Phys. Rev. 
Letters 10, 368 (1963); P. Conley, E. L. Hart, K. W. Lai, A. 
London, G. C. Moneti, et al., Phys. Rev. Letters 10, 371 (1963). 
The most recent measurement gives T(<f> —> p-\-ir)/T(<j> —> KK) 
= 0.1 ±0 .1 , [G. London (private communication)]. 

at the blob A to go into the n possible intermediate 
mesons. Let us assemble these amplitudes into a vector 
a. Likewise, let us assemble the n amplitudes at the 
blob B into a vector b. Then, using Eq. (8) for the 
propagator, and retaining only pole terms, we find that 
the transition amplitude is 

E b ^ W a ^ 2 - ^ 2 ) - 1 . (51) 

r 

Using Eq. (9), we can write this as 

£ bTe^^-mr
i)-1e^Ta. (52) 

r 

We may interpret this in the following way: the 
physical-particle state, with mass mr, is a superposition 
of "bare-particle states" which couple symmetrically 
to the incoming and outgoing particles. The expansion 
coefficients are the components of the vector e(r). As 
we explained in Sec. II, this is a plausible interpretation 
for the particle-mixing approximation, in which the 
vectors e(r) are an orthonormal set, but for more general 
approximations, in which this is not the case, it acquires 
more of the aspect of a metaphor. In fact, in our for
malism, it is never anything but a metaphor; it is clear 
from the definition of the e(r) in Eq. (10) that they 
have very little connection with the coefficients in the 
expansion of physical-particle states in terms of eigen-
states of the symmetric Hamiltonian. 

Nevertheless, in order to compare our results with 
those of other workers, let us calculate the vectors e^ 
and ew. From Eq. (38), we find that 

X(mJ-M2j-m^), (53) 

and e^ is of the same form with m$ and ma interchanged. 
These vectors are almost orthogonal. This is a coin
cidence caused by the near equality of Mi and M2) 
however, it allows us to define a "mixing angle." It is 
approximately ±29°. Dashen and Sharp,3 using the 
particle mixing approximation in which there is always 
a well-defined mixing angle, find an angle of 38°. In both 
cases, the mixing angle is defined such that, for zero 
angle, the </> is pure octet. 

Subtracted Particle Mixing 

In Sec. II we pointed out that naive application of 
the particle-mixing approximation leads to violations 
of current conservation. Vector mixing is one way of 
avoiding this difficulty. Another method that has been 
suggested18 is to use particle mixing to calculate only 
the imaginary part of (for example) electromagnetic 
form factors. The real part may then be calculated by 
dispersion relations, and the subtraction constants ad
justed as to guarantee current conservation. 

18 S. L. Glashow (private communication). 
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This is evidently equivalent to making the sub
traction in the propagator; that is to say, to using a 
propagator of the form 

D = ( J P - M ^ + M ^ - M o - 1 . (54) 

This vector-meson propagator satisfies all the con
sequences of transversality. Of course, it has a singu
larity at infinity, where the true propagator is singu
larity-free, but this need not bother us, since we are 
only concerned with low-energy approximations. 

Although this is in many ways a reasonable alterna
tive procedure, we prefer vector mixing. We have 
several reasons: 

(1) I t is possible to construct models (e.g., quantum 
electrodynamics in 2 + 1 dimensions) in which there is 
no subtraction for the electric form factor, although 
current is still conserved. I t is difficult to justify sub
tracted particle mixing in this case; vector mixing 
encounters no difficulties. 

(2) I t is plausible that when we examine the electro
magnetic form factors at high-momentum transfers, we 
see the structure of the bare, noninteracting particles. 
(However, to our knowledge, there is no rigorous proof 
of this.) This structure should preserve the symmetry 
of the original theory. Therefore it is desirable to have 
symmetry-breaking effects do minimal damage to the 
high momentum-transfer behavior of the form factors. 
In this respect, vector mixing is superior to subtracted 
particle mixing. 

(3) The current experimental data11 on the electric 
form factors of the nucleons is fitted well by expressions 
that contain no "hard cores," that is to say, which have 
no contributions from distant singularities. If we use 
subtracted particle mixing, we find that distant singu
larities necessarily play an important role in the form 
factors of strange baryons, even though they play a 
negligible role in nucleon form factors. Vector mixing 
does not disturb us in this way. We consider this to be 
its greatest advantage. 

Method of Dashen and Sharp 

D ashen and Sharp3 preserve current conservation 
for the form factors using a particle-mixing approxi
mation without making mixing-dependent subtractions. 
They do this by using momentum-dependent form 
factors for the vector-meson-baryon coupling. To be 
precise, they assume that the coupling of a physical 
vector meson to baryons is proportional to the vector-
meson mass. This is equivalent to using momentum-
independent couplings and using a propagator of the 
form 

D = M ( £ 2 - M ) - y - 2 , (55) 

where fi is a constant with dimensions of a mass. (The 
equivalence is clearly seen if we adopt a set of basis 
fields such that M is diagonal.) But this may be written 

D = ( Z ^ 2 - M
2 ) - 1 , (56) 

where Z is M~V« But, if the masses of the vector 
mesons are equal in the absence of the symmetry-
breaking interaction (as is the case for co-<£ mixing), 
then this is nothing but vector mixing. 

The results of Dashen and Sharp are not strictly 
equivalent to ours because they apply Gell-Mann-
Okubo arguments to M rather than to Z. However, 
due to the relatively small magnitude of the mass 
splitting, this does not have a large effect. 

V. DISCUSSION 

We have shown that ordinary particle mixing may 
be placed in a field-theoretic context, and that, within 
this context, for a large class of interactions, it is a 
suitable approximation for treating particles of spin 
zero. However, for particles of spin one, again for a 
large class of interactions, particle mixing is inferior to 
vector mixing. 

The most striking deficiency of particle mixing for 
particles of spin one is that its naive application to <£-co 
mixing leads to a violation of the conservation of electric 
charge. Vector mixing does not have this difficulty. 
There are, of course, other approximations that preserve 
the conservation of charge, some of which are closer in 
appearance to ordinary particle mixing than is vector 
mixing. We have discussed some of these in Sec. IV, 
and explained there why we believe them to be not as 
satisfactory as vector mixing. 

We have left two closely related theoretical problems 
unsolved: We do not know how to refound our work on 
analytic 5-matrix theory. (This is important if we wish 
to extend our results, which we have only shown to be 
valid for fundamental particles, to composite systems.) 
We do not know how to extend our results to systems 
of spin other than zero or one. We suspect that the 
place of the sum rule (27), which plays such an im
portant part in our analysis, will be taken by the 
condition that the scattering amplitude for the jth. 
partial wave must go to zero like k2]'+1 near threshold. 

Our attempts to apply vector mixing to the co-0 
system have not met with much success. The principal 
reason for this seems to be the unreliability of our 
input data (the residues at the vector-meson poles in 
nucleon-nucleon scattering, nucleon-electromagnetic 
form factors, and K production). These quantities have 
been calculated only on the basis of very crude models, 
and the values we possess for them are qute unreliable. 
The only quantity we have calculated that is inde
pendent of these residues, the <f> —»KK decay rate, is 
in good agreement with experiment. However, the 
near future should bring far better values; then our 
formulas should provide good checks of both unitary 
symmetry and vector mixing. 
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APPENDIX I: PROOF OF A THEOREM 

In the body of the paper we stated the theorem that 
the pole approximation for the propagator, 

D(£2) = L Q^/(k2-m2), (Al) 

where the p(r) are real symmetric matrices of rank one, 

e(r) = e ^ e ^ r , (A2) 

is equivalent to the inverse propagator being a linear 
function of k2, 

D-l(k2) = Zk2-M, (A3) 

where M and Z are real, symmetric, positive-definite 
matrices. In this Appendix we shall prove this 
statement. 

First we shall show that (Al) implies (A3). We 
assume that the e(r) form a complete set of vectors. 
Then we may introduce a reciprocal set of vectors I(r) 

defined by 
e^Ti^ = i^Te^ = 8rs. (A4) 

As a consequence of Eq. (A4), 

£re<'>f<'>r=Lrf<*>e<'>r=I. (A5) 

Using the f(r), it is trivial to construct D-1, 

D-!=Er f (r)f <r)T(k2- m2). (A6) 

This clearly is equivalent to (A3) if 

Z=£f(r)i(r)T, (A7) 
r 

and 
M = E f w f w W . (A8) 

r 

Now we will show that (A3) implies (Al). A well-
known theorem in matrix theory states that given any 
two real symmetric matrices, one of which is positive 
definite, there exists a congruence transformation that 
reduces the positive-definite matrix to the identity and 
diagonalizes the other matrix. Let Z be the positive-
definite matrix and M the other. Then the theorem is 
equivalent to saying that there exists a set of vectors 
f(r) such that Eqs. (A7) and (A8) are true. Let us 
define a set of vectors e(r) by Eq. (A4). Then it is trivial 
to find D from D_1 and we obtain Eqs. (Al) and (A2). 

APPENDIX II: MASSLESS VECTOR MESONS 

In the body of this paper we have followed the 
custom in strong interaction physics and have only 
treated electromagnetic phenomena to first order in e. 
Thus, there has been no need for us to consider the 
mixing of the photon with other vector mesons, since 
this is an effect of order e2. In this Appendix we will 
obtain some results on vector mixing in the case where 
one of the vector mesons has zero mass. To treat this 

case properly, we would have to redo our entire analysis, 
for the formalism on which it is based, and in particular 
the sum rules (27) and (28), are valid only for massive 
vector mesons. It is notorious that massless vector 
mesons require a quite different treatment. Despite 
this, we shall simply apply the results of Sec. II. to 
this case; none of our formulas are infrared divergent, 
and, with luck, our results may be valid even if our 
methods are doubtful. 

We begin with the formula for the propagator in 
the vector-mixing approximation 

D(k2)=(k2-Mo+hk2)-1. (30) 

We want this to have a pole at k2 = 0; therefore, 

detD-1(0) = det(-M0) = 0. (A9) 

Since M0 is diagonal, this means one of its diagonal 
entries must be zero; without loss of generality, we 
may choose it to be the first. To obtain a zero physical 
mass one must begin with a zero bare mass, at least in 
this approximation. 

We will now determine the residue of the pole at 
zero-momentum transfer, which we call 90. 

90= lim ^ [ ^ - n ( ^ ) ] - 1 . (A10) 
fc2->0 

Now, 
(k2-n)-l=[det(k2-n)lr1 adj(£2-n), (All) 

where by adjA we denote the matrix constructed of 
the cofactors of A. Det(&2—n) is a polynomial in k2, 
with a simple zero at k2 = 0, 

de t (£ 2 -n)= (l+[5]nVo&2+0(&4), (A12) 
where 

f » o = E [ - M 0 ] « . (A13) 

Likewise, 
ad j [A 2 -n> . 0 =adj ( -Mo) . (A14) 

Since M0 is a diagonal matrix with one diagonal entry 
zero, adj (M0) is zero except for its first diagonal entry, 

[adj(-M0)]<i=woMyo. (A15) 
Thus, 

Cffo^^Cl+rai i^Myo. (A16) 

This means that the photon pole occurs only in the 
photon channel, and never in any other channel. (Of 
course, this must be the case, if the Coulomb force 
between particles is to depend only on their electric 
charge and not on their hypercharge or isospin.) On 
the other hand, there is no such constraint on the other 
residues, and thus it is possible to have a p-meson pole 
in the photon channel. (Of course, this must be the case, 
if our analysis of form factors, in the main body of the 
paper, certainly valid to first order in e, is not to be 
contradicted.) 


